Karush-Kuhn-Tucker systems: regularity conditions, error bounds and a class of Newton-type methods

نویسندگان

  • Alexey F. Izmailov
  • Mikhail V. Solodov
چکیده

We consider optimality systems of Karush-Kuhn-Tucker (KKT) type, which arise, for example, as primal-dual conditions characterizing solutions of optimization problems or variational inequalities. In particular, we discuss error bounds and Newton-type methods for such systems. An exhaustive comparison of various regularity conditions which arise in this context is given. We obtain a new error bound under an assumption which we show to be strictly weaker than assumptions previously used for KKT systems, such as quasi-regularity or semistability (equivalently, the R0-property). Error bounds are useful, among other things, for identifying active constraints and developing efficient local algorithms. We propose a family of local Newton-type algorithms. This family contains some known active-set Newton methods, as well as some new methods. Regularity conditions required for local superlinear convergence compare favorably with convergence conditions of nonsmooth Newton methods and sequential quadratic programming methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis of Newton ' s Method for

In this paper we analyze the application of Newton's method to the solution of systems of nonlinear equations arising from equivalent forms of the rst{order Karush{Kuhn{Tucker necessary conditions for constrained optimization. The analysis is carried out by using an abstract model for the original system of nonlinear equations and for an equivalent form of this system obtained by a reformulatio...

متن کامل

Generalized Newton and Ncp - Methods : Convergence , Regularity , Actions

Solutions of several problems can be modelled as solutions of nonsmooth equations. Then, Newton-type methods for solving such equations induce particular iteration steps (actions) and regularity requirements in the original problems. We study these actions and requirements for nonlinear complementarity problems (NCP’s) and Karush–Kuhn–Tucker systems (KKT) of optimization models. We demonstrate ...

متن کامل

The Josephy–newton Method for Semismooth Generalized Equations and Semismooth Sqp for Optimization

While generalized equations with differentiable single-valued base mappings and the associated Josephy–Newton method have been studied extensively, the setting with semismooth base mapping had not been previously considered (apart from the two special cases of usual nonlinear equations and of Karush-Kuhn-Tucker optimality systems). We introduce for the general semismooth case appropriate notion...

متن کامل

Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions

We consider a class of Newton-type methods for constrained systems of equations that involve complementarity conditions. In particular, at issue are the constrained Levenberg–Marquardt method and the recently introduced Linear-Programming-Newton method, designed for the difficult case when solutions need not be isolated, and the equation mapping need not be differentiable at the solutions. We s...

متن کامل

Differentiable Local Barrier-penalty Paths Barrier-penalty Paths

Perturbations of Karush-Kuhn-Tucker conditions play an important role for primal-dual interior point methods. Beside the usual logarithmic barrier various further techniques of sequential unconstrained minimization are well known. However other than logarithmic embeddings are rarely studied in connection with Newton path-following methods. A key property that allows to extend the class of metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2003